Interactions of lung stretch, hyperoxia, and MIP-2 production in ventilator-induced lung injury.

نویسندگان

  • Deborah A Quinn
  • Ramzi K Moufarrej
  • Alexey Volokhov
  • Charles A Hales
چکیده

The use of positive pressure mechanical ventilation can cause ventilator-induced lung injury (VILI). We hypothesized that hyperoxia in combination with large tidal volumes (VT) would accentuate noncardiogenic edema and neutrophil infiltration in VILI and be dependent on stretch-induced macrophage inflammatory protein-2 (MIP-2) production. In rats ventilated with VT 20 ml/kg, there was pulmonary edema formation that was significantly increased by hyperoxia. Total lung neutrophil infiltration and MIP-2 in bronchoalveolar lavage (BAL) fluid were significantly elevated, in animals exposed to high VT both on room air (RA) and with hyperoxia. Hyperoxia markedly augmented the migration of neutrophils into the alveoli. Anti-MIP-2 antibody blocked migration of neutrophils into the alveoli in RA by 51% and with hyperoxia by 65%. We concluded that neutrophil migration into the alveoli was dependent on stretch-induced MIP-2 production. Hyperoxia significantly increased edema formation and neutrophil migration into the alveoli with VT 20 ml/kg, although BAL MIP-2 levels were nearly identical to VT 20 ml/kg with RA, suggesting that other mechanisms may be involved in hyperoxia-augmented neutrophil alveolar content in VILI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of Akt and endothelial nitric oxide synthase in ventilation-induced neutrophil infiltration: a prospective, controlled animal experiment

INTRODUCTION Positive pressure ventilation with large tidal volumes has been shown to cause release of cytokines, including macrophage inflammatory protein-2 (MIP-2), a functional equivalent of human IL-8, and neutrophil infiltration. Hyperoxia has been shown to increase ventilator-induced lung injury, but the mechanisms regulating interaction between a large tidal volume and hyperoxia are uncl...

متن کامل

Hyperoxia increases ventilator-induced lung injury via mitogen-activated protein kinases: a prospective, controlled animal experiment

INTRODUCTION Large-tidal volume (VT) mechanical ventilation and hyperoxia used in patients with acute respiratory distress syndrome can damage pulmonary epithelial cells through lung inflammation and apoptotic cell death. Hyperoxia has been shown to increase ventilator-induced lung injury, but the mechanisms regulating interaction between large VT and hyperoxia are unclear. We hypothesized that...

متن کامل

Time course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats

Objective(s):Therapies with high levels of oxygen are commonly used in the management of critical care. However, prolonged exposure to hyperoxia can cause acute lung injury. Although oxidative stress and inflammation are purported to play an important role in the pathogenesis of acute lung injury, the exact mechanisms are still less known in the hyperoxic acute lung injury (HALI).   Materials ...

متن کامل

Critical role for CXCR2 and CXCR2 ligands during the pathogenesis of ventilator-induced lung injury.

Mortality related to adult respiratory distress syndrome (ARDS) ranges from 35% to 65%. Lung-protective ventilator strategies can reduce mortality during ARDS. The protective strategies limit tidal volumes and peak pressures while maximizing positive end-expiratory pressure. The efficacy of this approach is due to a reduction of shear-stress of the lung and release of inflammatory mediators. Ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 93 2  شماره 

صفحات  -

تاریخ انتشار 2002